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LEITER TO THE EDITOR 

Boundary conditions and the free energy for statistical 
mechanical models 

P P Martin 
Department of Theoretical Physics, University of Manchester, Manchester M13 9PL, UK 

Received 10 March 1987 

Abstract. We show that the choice of boundary conditions can significantly affect the 
calculation of the free energy for discrete statistical mechanical models on finite or 
semi-infinite lattices when the exponentiated coupling is extended into the complex plane. 
We show, however, that the boundary conditions most consistent with boundary configur- 
ation independence in the direction in which a lattice is infinite give a unique analytic 
function for the free energy. This unique function is the free energy most appropriate for 
extrapolation to the full thermodynamic limit. We show that such boundary conditions 
are orthogonal to all but one degenerate ferromagnetic ground states at zero temperature. 

There has been much interest recently in the zeros of the partition function, and hence 
the analytic properties of the free energy, in the complex exponentiated coupling plane 
for statistical mechanical models (see, for instance, Wood 1985, Baxter 1986, 1987a, 
Martin and Maillard 1986, Glasser et al 1986 and Stephenson 1987 and references 
therein). In this letter we point out the potential ambiguities associated with boundary 
conditions in such calculations which are not present if attention is restricted to real 
coupling values. We resolve these ambiguities. 

The n-site transfer matrix T for a discrete statistical mechanical lattice model is 
the matrix whose i, j th  element gives the partition function 

(where the Hamiltonian H depends on the discrete lattice variables {uk}) for an n-site 
lattice layer when the configuration of the variables at the leading and trailing edges 
of the layer are given by the row and column positions i and j respectively. Provided 
that succeeding layers are the same (regular), the partition function for an n x m lattice 
is then given by 

where the vectors correspond to some boundary conditions (see, for example, Kogut 
1979). In a recent paper (Martin 1986, hereafter referred to as I )  we showed how the 
zeros of the partition function (in complex exp(p)) for a finite or semi-infinite lattice 
can give an indication of the global analytic structure of the free energy 

This is important since it gives the phase structure of the model (Fisher 1965, Pearson 
1982 and references therein). 
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A consequence of Perron’s theorem (see Bellman 1960) is that, provided H and /? 
are real and finite and n is finite, the free energy is described by a single analytic 
function in exp(p)  which is the log of the unique largest eigenvalue of T (compare 
equations (2) and (3)). In  I we showed the need for care over boundary conditions 
in this context if, as when describing the Potts model in the ice-model representation 
(Baxter et a1 1976), H is not always real. In the present letter we explain the need 
for similar care when H is real but exp(/?) is complex. 

In  general we would like to require that the free energy be independent of the 
boundary configurations in a direction in which the infinite limit has been taken (when 
applicable, Perron’s theorem alone ensures this). Furthermore, we might expect that 
the analytic function which gives the free energy on the positive axis should give it on 
continuation to the complex plane, since (in this context) the properties of this function 
alone are those relevant to the physical model (again compare (2) and (3)).  Finally, 
if there is any ambiguity in the definition of an extended free energy we want a practical 
definition appropriate for indicating the analytic structure of the thermodynamic limit 
function. 

However, if not properly interpreted, results in the complex plane appear to depend 
profoundly on boundary conditions. The procedure for finding zeros of the partition 
function is, in principle, to identify points of degenerate magnitude of the largest two 
eigenvalues of T which can contribute to the free energy (see I) .  In  general T has 
various eigenvalues of largest magnitude in different regions of the plane (consider 
the point p = CO where most spin models have degenerate ground states), but we will 
see that these eigenvalues should not necessarily contribute to the partition function. 
They come in general from different global analytic functions and their contributions 
may be projected to zero by a choice of boundary condition in equation (2) orthogonal 
to the corresponding eigenvector (see later). 

We will first show that certain physically reasonable boundary conditions (defined 
below) give a unique global analytic function for the free energy in the whole plane 
and then show that this result is complementary to the requirement of infinite-limit 
boundary configuration independence. We will thus describe the prescription for 
obtaining a finite or semi-infinite lattice approximation to the limiting analytic structure 
of the free energy. 

Consider the block diagonalisation of T using /?-independent similarity transforma- 
tions. Such a partial diagonalisation involves all the various (/?-independent) spatial 
and internal symmetries of the Hamiltonian (see I and, for example, Schultz et a1 
1964). If such symmetries are the only ones manifested in T (as is the case in all 
known examples; see later) then the diagonalisation can proceed until the eigenvalues 
of a block are the branches (Hille 1962) of a single global analytic function of exp(/?) 
(consider equation ( 1  1). Further diagonalisation would then require /?-dependent 
transformations, since the initial T is polynomial in exp(/?). At worst the eigenvalues 
in such a block are the branches of a small subset of the set of global analytic functions 
whose branches constitute the full spectrum of T. In  I we then focused on the block 
containing the largest eigenvalue on the real axis 

A ,  = exp( F , ) .  

To see why consider the block diagonalised T at /? = 0. From equation ( 1 )  we see 
that all the eigenvalues except A ,  are zero at this point. Thus all the blocks except the 
I x I block containing A ,  are zero: 
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T ( P = O ) =  

0 

0 

0 

0 

(4) 

The eigenvector for A ,  at this point may be written 

l l ) o = ( l ,  1,1, .  . . ,1)‘ 

Il)O’(CI, c2, C,, * * .  , CPlT 

(in this context T means transpose) in the original basis, or, say 

where p is the total dimension of T, in the block diagonal basis. But since ll)o is an 
eigenvector with eigenvalue A ,  # O  at /3 = O  we have that Ci = O  if i >  1. 

Now for general p in this basis we have 

T =  

We can, in principle, move to a basis in which all but the first block is diagonal, and 
the vector 

( C , ,  CZ, * .  . , c,,o,o,. * .  90) 

is clearly unchanged. I t  is therefore orthogonal to all eigenvectors associated with 
eigenvalues outside the A ,  block for all p, since these vectors have zeros in their first 
1 entries in this (and hence in the block diagonal) basis. 

Of course, orthogonality is basis independent, so all eigenvectors associated with 
eigenvalues outside the A ,  block are orthogonal to 

( 1 , 1 , 1 , .  . . , 1) 

( Y l ,  Y z 3 . .  . ,  Y p )  

for all p in the original spin-configuration basis. That is, writing such a vector as 
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we have that 
P 

Y ,  = o .  
i = l  

Regarded as a boundary vector (in equation (2))  Il)o corresponds to an unweighted 
sum over possible boundary configurations. We take this to be a reasonable boundary 
condition and it should therefore allow a calculation of the free energy using equation 
(2)  and the semi-infinite version of equation (3) ,  F,,. We see from the above that for 
general P it will project away all but the branch partners of A I .  

In contrast, any vector sensitive to other eigenvalues (orthogonal to I l)o) corresponds 
to a weighted sum over boundary configurations with cancelling total weight (from 
equation ( 6 ) ) .  Our requirement that the specific boundary configuration be unimportant 
in the limit thus implies that we should in any case set such contributions to zero in 
calculations of the free energy (although they will of course be important in correlation 
functions). This means, for instance, that we should be careful about the interpretation 
of results obtained using periodic boundary conditions in the infinite direction in 
semi-infinite lattices, since they include such unwanted contributions in the trace. 
Fortunately the Il)o boundary condition is in general quite easy to implement. 

Of course such contributions are unimportant anyway if eigenvalues associated 
with eigenvectors contributing to Il)o are already those of largest magnitude in the 
whole complex plane (as A, is on the positive axis). However, it is easy to see that 
this is not usually the case. For instance, when P = *a some of the elements Tu are 
zero, whereupon a condition for Perron’s theorem is violated (see Bellman 1960). The 
largest two or more eigenvalues can then be degenerate, typically corresponding to a 
global spin change symmetry in H. From equation ( 1 )  we see that in general for a 
ferromagnetic ground state T may then be written, up to irrelevant interchanges in the 
original spin configuration basis, in the form 

1 

1 
0 
0 
0 

0 

(7 )  

where the first d diagonal entries are 1 for a d-fold degenerate ground state. The 
eigenvectors associated with these states take the form 

where 11,j) is the vector with j th  entry 1 ,  all others zero. The coefficients k l . j  may be 
obtained by continuity with finite P. Since the ground state is unique at any finite P 
it cannot break the symmetry, so one of the eigenvectors must be the symmetric 
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combination 

k , , ,  = 1 for a l l j  = 1, d 
and the others must then have the property 

(9) 

d 

ki,j = 0 i Z 1  (10) 
j = l  

by orthogonality. But all these other vectors are then orthogonal to Il)o. 

The transfer matrix may be written 
Consider for example, the two-dimensional q-state Potts model (q  > 2) with n = 2. 

where x = [(exp(P) - l)/q”’]Z, I is the q“ x q“ unit matrix and, in an appropriate basis, 
n 

ui - @ ( I r , , !  0 U ; )  
m =O 

where Irr,, is the rm x rm unit matrix with 

rm = fi [ -4 cos’( z) 2 m + l  + q] 
r =  1 

and { U T }  is the mth representation of the Temperley-Lieb algebra (Temperley and 
Lieb 1971) in the notation of Martin (1987); specifically 

and Ui.2,3 = 0 (Baxter 1982, 1987b). In this block diagonalised basis we have 

which picks out only the U o  sub-block. The eigenvalues of this sub-block in T are 
the branches of F2 for the Potts model, thus illustrating our first point. When P = 00 

we have 

T-q-1’2exp(3P)U2 

where, in an appropriate basis, 

so one of the degenerate ground states comes from the U” sub-block and one each 
from the (q  - 1) U’  sub-blocks (see equation (13 ) )  which do not contribute to the free 
energy. These results may be generalised to larger n as indicated and by the additional 
use of similarity transformations associated with spatial symmetries. 
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Now in the full thermodynamic limit we could in principle work equally well with 
the trace or Il)o boundary conditions. Since the degenerate eigenvalues above the 
critical coupling pc are essentially identical (see, for example, Schultz er a1 1964) the 
degeneracy simply gives a vanishingly small additive constant (see equation ( 3 ) ) .  
However, this means that the free energy has a no  more complicated structure in the 
degenerate region than in the unique region. Thus, from the practical perspective, if 
we want to extrapolate the analytic structure of the free energy to the infinite limit 
(see I )  the smoothest extrapolation will in any case come using the unique function F,. 
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